
Adaptive Exploration using Stochastic Neurons

Michel Tokic1,2 and Günther Palm1

1 Institute of Neural Information Processing, University of Ulm, Germany
2 Institute of Applied Research, University of Applied Sciences

Ravensburg-Weingarten, Germany

Abstract. Stochastic neurons are deployed for efficient adaptation of
exploration parameters by gradient-following algorithms. The approach
is evaluated in model-free temporal-difference learning using discrete ac-
tions. The advantage is in particular memory efficiency, because mem-
orizing exploratory data is only required for starting states. Hence, if
a learning problem consist of only one starting state, exploratory data
can be considered as being global. Results suggest that the presented
approach can be efficiently combined with standard off- and on-policy
algorithms such as Q-learning and Sarsa.

Keywords: reinforcement learning, exploration/exploitation

1 Introduction

One of the most challenging tasks in reinforcement learning (RL) is balancing
the amount of exploration and exploitation [1]. If the behavior of an agent is
too exploratory, the outcome of randomly selected bad actions can prevent from
maximizing short-term reward. In contrast, if an agent is too exploitative, the se-
lection of only sub-optimal actions prevents from maximizing long-term reward,
because the outcome of true optimal actions is underestimated. Conclusively,
the optimal balance is somewhere in between, dependent on many parameters
such as the learning rate, discounting factor, learning progress, and of course on
the learning problem itself.

Many different approaches exist for trading off exploration and exploitation.
Based on a single exploration parameter, some basic policies select random ac-
tions either equally distributed (ε-Greedy) or value sensitively (Softmax) [1], or
by a combination of both [2], with the advantage of not requiring to memorize
any exploratory data. In contrast, approaches utilizing counters in every state
(exploration bonuses) direct the exploration process towards finding the optimal
policy in polynomial time under certain circumstances [3, 4]. Nevertheless, basic
policies can be effective having a proper exploration parameter configured, which
has been successfully shown for example in board games with huge discrete state
spaces like Othello [5] or English Draughts [6]. For such state spaces, utility func-
tions are hard to approximate, and conducting experiments for determining a
proper exploration parameter can be time consuming. A non-convergent counter
function is even harder to approximate than a convergent utility function [7]. In-
terestingly, Daw et al. revealed in biologically-motivated studies on exploratory

decisions in humans that there is [...] no evidence to justify the introduction of
an extra parameter that allowed exploration to be directed towards uncertainty
(softmax with an uncertainty bonus): at optimal fit, the bonus was negligible,
making the model equivalent to the simpler softmax [8]. However, the search for
an appropriate exploration parameter for such policy remains.

In the following, a stochastic neuron model [9] is deployed for adapting the
exploration parameter of basic exploration policies instead of tuning such param-
eter by hand in advance. We evaluate the algorithm in discrete and continuous
state spaces using variants of the cliff-walking and mountain-car problems.

2 Methodology

The learning problems considered in this paper can be described as Markovian
Decision Processes (MDP) [1], which basically consist of a set of states, S, and a
set of possible actions within each state, A(s) ∈ A,∀s ∈ S. A stochastic transi-
tion function P(s, a, s′) describes the (stochastic) behavior of the environment,
i.e. the probability of reaching successor state s′ after selecting action a ∈ A(s)
in state s. The selection of an action is rewarded by a numerical signal from
the environment, r ∈ R, used for evaluating the utility of the selected action.
The goal of an agent is finding an optimal policy, π∗ : S → A, maximizing the
cumulative reward. In the following, it is allowed for S to be continuous, but
assumed that A is a finite set of actions. Action-selection decisions are taken at
regular time steps, t ∈ {1, 2, . . . , T}, until a maximum number of T actions is
exceeded or a terminal state is reached.

2.1 Learning Algorithms

In reinforcement learning, behavior can be derived from a utility function esti-
mating so far learned knowledge as the expected and discounted future reward,
Q(s, a) = E

{∑∞
k=0 γ

krt+k+1|st = s, at = a
}

, for taking action a in state s [1]. If
no model of the environment is present, utility functions must be sampled from
observations of the interaction between the agent and its environment, which is
also known as temporal-difference learning. Two commonly used learning algo-
rithms are Sarsa [7] and Q-learning [10], where the technical difference between
both algorithms is the kind of successor-state information used for evaluating
action at in state st. Sarsa includes the discounted value of the actual selected
action in the successor state, for which reason it is classified being an on-policy
algorithm. In contrast, Q-learning includes the discounted value of the estimated
optimal action in the successor state for which reason it is classified being an
off-policy algorithm. On-policy algorithms have the advantage of including into
Q respective costs from stochastic action-selection policies, but have in turn no
convergence guarantee, except when the policy has a greedy behavior3 [1].

For sampling Q accurately, a proper trade-off between exploration and ex-
ploitation is required. Basic exploration policies such as ε-Greedy [10] select a

3 i.e. taking in state s an action having the highest estimated utility Q(s, a).

certain amount of random actions with regard to an exploration rate ε. A disad-
vantage of such policy is that exploration actions are selected equally distributed
among all possible actions, which might cause the income of high negative re-
wards from several bad actions, even if their true utility is correctly estimated.
For this, another basic policy is selecting actions according to their weighting in
a Boltzmann distribution (the Softmax policy), which also takes so far estimated
utility into account [1]. A known problem of Softmax is that it [...] has large prob-
lems of focusing on the best actions while still being able to sometimes deviate
from them [2]. For this, Wiering proposed to combine Softmax with ε-Greedy
into the Max-Boltzmann Exploration (MBE) rule [2], which selects exploration
actions according to Softmax instead of being equally distributed.

A drawback of the above mentioned basic exploration policies is that an ex-
ploration parameter (ε or τ , or both for MBE) needs to be found. Such parameter
varies dependent on the learning problem, and typically an exploratory behavior
is desired at the beginning of the learning process, when everything is unknown
(in model-free RL). For this, some applications make use of an decreasing ex-
ploration rate [11], but which is known as to be inefficient for non-stationary
environment responses. Other approaches such as the VDBE-Softmax policy
dynamically adapt a state-dependent exploration rate, ε(s), based on learning
progress measured as fluctuations in Q [12].

3 Exploration Control using Stochastic Neurons

Finding a near optimal exploration parameter by trial-and-error can be a very
time consuming task, and conclusively it is desired having algorithms adapt-
ing this parameter based on current operating conditions. The proposed idea
is adapting the parameter, ae, of an action-selection policy, π(ae, ·, ·), towards
improving the future outcome of π with regard to a performance measure ρ. For
maximizing ρ in the future, we deploy Williams’ “REINFORCE with multipa-
rameter distributions” algorithm using a stochastic neuron model [9]. The input
to such neuron is a weighted parameter vector θ, from which the neuron deter-
mines an adaptable stochastic scalar as its output, i.e. reinforcement learning in
continuous action spaces. However, our investigated domain consists of discrete
actions, thus the algorithm is applied for adapting the continuous-valued explo-
ration parameter, i.e. REINFORCE Exploration-Parameter Control (REC). For
example, if π(ae, ·, ·) is an ε-Greedy policy, the exploration parameter ae refers
to the exploration rate ε, i.e. ae ≡ ε.

Assuming one starting state, the exploration parameter ae is drawn at the
beginning of an episode (being valid over the whole episode) from a Gaussian
distribution, ae ∼ N (µ, σ), whose density function is given by

g(ae, µ, σ) =
1

σ
√

2π
e−(ae−µ)2/2σ2

. (1)

Let θ denote the vector of adaptable parameters consisting of

θ =

(
µ
σ

)
. (2)

At the end of episode i, the components of θ are adapted towards the gradient
with regard to the outcome ρ of the current episode

θi+1 ≈ θi + α∇θρ . (3)

For improving the future performance of π(ae, ·, ·), the policies outcome is mea-
sured as the cumulative reward in the current episode

ρ = E{r1 + r2 + · · ·+ rT |π(ae, ·, ·)} . (4)

Next, the characteristic eligibility of each component of θ is estimated by

∂ ln g(ae, µ, σ)

∂µ
=
ae − µ
σ2

(5)

∂ ln g(ae, µ, σ)

∂σ
=

(ae − µ)2 − σ2

σ3
, (6)

and a reasonable algorithm for adapting µ and σ has the following form

∆µ = αR(ρ− ρ̄)
ae − µ
σ2

(7)

∆σ = αR(ρ− ρ̄)
(ae − µ)2 − σ2

σ3
. (8)

The learning rate αR has to be chosen appropriately, e.g. as a small positive
constant, αR = ασ2, [9]. The baseline ρ̄ is adapted by a simple reinforcement-
comparison scheme

ρ̄ = ρ̄+ α(ρ− ρ̄) . (9)

Analytically, in Eqn. 7 the mean µ is shifted towards ae in case of ρ ≥ ρ̄. On the
contrary, µ is shifted towards the opposite direction if ρ is less than ρ̄. Similarly,
in Eqn. 8 the standard deviation σ is adapted in a way that the occurrence of ae
is increased if ρ ≥ ρ̄, and decreased otherwise (see proof in [9]). In simple words,
the standard deviation controls exploration in the space of ae.

Importantly, a proper functioning of the proposed algorithm depends on some
requirements. In order to limit the search of reasonable parameters, the explo-
ration parameter, mean and standard deviation must be bounded for obtaining
reasonable performance. Furthermore, if the learning problem consists of more
than one starting state, all parameters must be associated to each occurring
starting state, i.e. µ → µ(s), σ → σ(s) and ρ̄ → ρ̄(s), since way costs might
affect ρ unevenly. However, if a learning problem consists of just one starting
state, all utilized parameters can be considered as global parameters.

4 Experiments

The presented approach is evaluated in two environments using Q-learning and
Sarsa. First, a variation of the cliff-walking problem [1] is proposed as the
non-stationary cliff-walking problem comprising a non-stationary environment.

(G2)
G1

S

1 5 10 21

Rewards:

a) b) c)

a)
1…200

b)
201…1000

c)
1001…3000

Phase/
Episode

41
500

rG1
rG2

3
n/a

21
n/a

(a)

Goal 2

r
t+1
=0

Goal 1

r
t+1
=1000

-1.2 -0.5 0.3

Position

(b)

Fig. 1. The non-stationary cliff-walking problem (a) and the mountain-car problem
with two goals (b).

Second, a variation of the mountain-car problem is investigated comprising a
continuous-valued state space approximated by a table, which causes partial ob-
servability of the actual coordinates. Investigated basic exploration policies are
ε-Greedy, Softmax and MBE. Since MBE requires two parameters to be set (ε
and τ), we only adapt ε of this policy, while setting the temperature parameter
constantly to the value of τ = 1, and normalizing all Q-values in state s into the
interval [−1, 1]. For comparison, the recently proposed VDBE-Softmax policy
is also evaluated, which works similar to the MBE policy, but adapts a state-
dependent exploration rate ε(s) based on fluctuations in the utility function Q
[12]. For this policy the adaptable parameter is the sensitivity parameter used
for controlling greediness.

4.1 The Non-Stationary Cliff-Walking Problem

The non-stationary cliff-walking problem is a modification of the cliff-walking
problem presented by Sutton and Barto [1], but additionally comprising non-
stationary responses of the environment. The goal for the agent is learning a
path from starting state S to the goal state G1, which is rewarded with the
absolute costs of the shortest path minus 1 if successful (see Fig. 1(a)). The way
costs (reward) for each action are defined as rstep = −1. The environment also
comprises unsafe cliff states, which lead to a high negative reward of rcliff = −100
when entered, and also reset the agent back to the starting state S.

At the beginning of the experiment, learning takes place in phase (a) of
Fig. 1(a) having one cliff state (at left border). After 200 learning episodes, the
grid world changes to phase (b), now comprising 10 cliffs. After additional 800
episodes, the problem is tightened as shown in phase (c), where the number
of cliffs is increased to 20. Additionally, an alternative goal state appears, G2,
which is much higher rewarded with rG2 = 500 when entered.

In each episode the agent starts in state S, as well an episode terminates
when a goal state, G1 or G2, is entered or the time limit of Tmax = 200 actions
is exceeded. Since the learning problem is episodic, no discounting (γ = 1) is
used. Finally, all utility values are optimistically initialized with Qt=0(s, a) = 0,
and learned using a constant step-size parameter of α = 0.2.

(a) Averaged reward per episode.

(b) Mean and standard deviation for MBE and Softmax.

Fig. 2. The non-stationary cliff-walking problem: Averaged results (smoothed) using
Q-learning and Sarsa. Note the dynamics of exploration for non-stationary environment
responses.

Results Figure 2(a) shows the averaged reward per episode over 500 runs for
the non-stationary cliff-walking problem. Averages of the mean µ and standard
deviation σ are shown in Figure 2(b). It is observable that VDBE-Softmax max-
imizes the reward/episode. MBE shows best performance of the remaining three
basic policies with the advantage of not requiring to memorize any further ex-
ploratory data such as utilized by VDBE-Softmax. The Sarsa learning algorithm
shows better results for all four investigated policies. All REC policies have a
much higher reward in episode 3000 compared to when using a pure greedy pol-
icy, which converges to a reward per episode of 0, and is only the optimal policy
for the first 1000 episodes. In contrast, a pure random policy converges to a
reward per episode of −2750 respectively.

4.2 The Mountain-Car Problem With Two Goals

In the mountain-car problem, the goal is driving an underpowered car up a
mountain road [1], by initially standing in the valley between two mountains.
The problem is that gravity is stronger than the car’s engine, thus reaching the
mountain top by full throttle only is not possible. Instead, the car has to swing

up for collecting enough inertia for overcoming gravity. In the here presented
modification of the original learning problem, two goal states are utilized as
depicted in Fig. 1(b), which are rewarded differently upon arrival, because a
simple greedy policy leads to optimal performance in the original description
of the learning problem. The bounded state variables are continuously valued
consisting of the position of the car, −1.2 ≤ x ≤ 0.3, and its velocity −0.07 ≤
ẋ ≤ 0.07. The car’s dynamics are described by differential equations

xt+1 = bound
[
xt + ẋt+1

]
ẋt+1 = bound

[
ẋt + 0.001at − 0.0025 cos (3xt)

]
. (10)

At each discrete time step, the agent can chose between one of seven actions, at ∈
{−1.0,−0.66,−0.33, 0, 0.33, 0.66, 1.0}, each rewarded by rt+1 = −1, except for
reaching the right goal, which is rewarded by rt+1 = 1000. An episode terminates
when either one of the two goals has been arrived or when a maximum number
of actions, Tmax = 10000, is exceeded. At the beginning of each episode, the car
is positioned in the valley at position x = −0.5 with initial velocity ẋ = 0.0.
The state space is approximated by a 100× 100 matrix, thus causing the actual
state to be only partially observable. Since the learning problem is episodic, no
discounting (γ = 1) is used. Finally, all utility values are optimistically initialized
with Qt=0(s, a) = 0, and learned using a step-size parameter of α = 0.7.

Results The averaged results over 200 runs are shown in Figure 3. Similar
to the non-stationary cliff-walking problem, episodic adaptation of MBE out-
performs ε-Greedy and Softmax. Furthermore, the Sarsa algorithm shows only
to be advantageous in combination with ε-Greedy and Softmax policies, in con-
trast to MBE and VDBE-Softmax behaving more efficiently in combination with
Q-learning. In the first phase of learning, a degradation of performance is rec-
ognizable for episodic MBE and VDBE-Softmax, which is due to the reason of
first learning a path to the left goal and afterwards learning the path to the right
(better) goal. For comparison, a greedy policy converges to an average reward
per episode of 114, in contrast to a pure random policy converging to −5440.

5 Discussion and Conclusions

In this paper, stochastic neurons have been deployed for adapting the exploration
parameter of basic exploration policies using gradient-following algorithms. A
global variant is evaluated with two popular learning algorithms, Q-learning and
Sarsa, in two different learning problems showing performance improvements
when trading off exploration and exploitation. Results from the non-stationary
cliff-walking problem show how the exploration parameter is readapted based on
learning progress when non-stationary environment responses are received. The
MBE policy turned out to be reliable for achieving good performance without
requiring to memorize any exploratory data. However, additional exploratory
data might further improve results as shown using VDBE-Softmax in the non-
stationary cliff-walking problem, but which is not always the case as it is observ-
able in the mountain-car problem with two goals.

Fig. 3. The mountain-car problem with two goals: Averaged reward using Q-learning
and Sarsa (smoothed).

Acknowledgements. Michel Tokic received funding by the collaborative center
for applied research ZAFH-Servicerobotik. The authors gratefully acknowledge
the research grants of the federal state Baden-Württemberg and the European
Union.

References

[1] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

[2] Wiering, M.: Explorations in Efficient Reinforcement Learning. PhD thesis, Uni-
versity of Amsterdam, Amsterdam (1999)

[3] Thrun, S.B.: Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie Mellon University, Pittsburgh, USA (1992)

[4] Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research 3 (2002) 397–422

[5] van Eck, N.J., van Wezel, M.: Application of reinforcement learning to the game
of Othello. Computers and Operations Research 35 (2008) 1999–2017

[6] Faußer, S., Schwenker, F.: Learning a strategy with neural approximated
temporal-difference methods in english draughts. In: Proceedings of the 20th
International Conference on Pattern Recognition. ICPR’10, IEEE Computer So-
ciety (2010) 2925–2928

[7] Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University (1994)

[8] Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical sub-
strates for exploratory decisions in humans. Nature 441(7095) (2006) 876–879

[9] Williams, R.J.: Simple statistical Gradient-Following algorithms for connectionist
reinforcement learning. Machine Learning 8 (1992) 229–256

[10] Watkins, C.: Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge, England (1989)

[11] Grzes, M., Kudenko, D.: Online learning of shaping rewards in reinforcement
learning. Neural Networks 23(4) (2010) 541–550

[12] Tokic, M., Palm, G.: Value-difference based exploration: Adaptive exploration be-
tween epsilon-greedy and softmax. In: KI 2011: Advances in Artificial Intelligence.
Springer Berlin / Heidelberg (2011) 335–346

