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Abstract—This paper introduces a system for teaching
biologically-motivated robot learning in university classrooms
that might be used in courses such as Artificial Intelligence
and/or Robotics. For this, we present a simple hardware robot
that is able to learn a forward walking policy on basis of a
reinforcement signal. Students are able to conduct experiments
on a PC with a software called the Teachingbox that controls
the robot. This software offers the possibility to control the
learning method’s parameters throughout the learning process,
which allows observing the effects of such parameters on a real
robot. Furthermore, learning on the hardware robot is very fast
since forward-walking policies are usually learned in about 30
seconds. Due to this quick learning process nearly no waiting time
is caused, and in return this fact often impresses the audience
and leads to the question: “How does it work?”.

I. INTRODUCTION & MOTIVATION

As robots or the environment of a robot become more and
more complex, the way of programming robots in the classical
supervised way also becomes more difficult. As a conse-
quence, engineers often program just a “working” behavior of
a robot, but which can be far away from an “optimal” behavior,
e.g. movements of a robot that maximize the forward walking
velocity. One possible solution to this general problem is
offered by learning behaviors from scratch—in the same way
as humans or animals do—instead of manually programming
the robot. In literature, learning in such way is called trial-and-
error learning which has been first studied in the domain of
psychology and animal learning [1]. Nowadays, the research
domain of reinforcement learning (RL) [2] aims to mimic
trial-and-error learning in a machine-learning approach based
on a reward signal (or reinforcement signal) which strengthens
or weakens action selections in certain situations with the goal
of maximizing the cumulative reward. Since robot learning
is just one possible application of RL, the knowledge about
this research domain broadens an engineer’s skill on behavior
programming that can also be applied to other applications.

Neller et. al. said: “Simple examples are teaching treasures.
Finding a concise, effective illustration is like finding a pre-
cious gem. When such an example is fun and intriguing, it is
educational gold.” [3]. At the University of Applied Sciences
Ravensburg-Weingarten, we were looking for such kind of
illustration that enables to teach RL within a narrow time-slot

of about four lessons of an Artificial Intelligence introductory
course. Within that given time-slot, we introduce the value-
iteration and Q-learning algorithms on discrete state and action
spaces and explain the exploration/exploitation problem. In
order to explain to the students the field of RL, we found
a crawling robot with a simple two-DOF arm as sketched
in Figure 1 appropriate that has been proposed by Kimura
et al. [4] and built in hardware by Tokic [5]. Furthermore,
the reason why we also favor a robot instead of a theoretical
problem is due to the fact that robots seem to be encouraging
motivators for students as also recently reported by Kay [6].

Fig. 1. A model of the crawling robot with its two joints gx and gy .

In case of discrete positions and small movement angles of
the joints, the state space of the robot arm can be approximated
by a grid world. In order to move forward, the robot has to
repeatedly perform a cycle of moves as shown in Figure 2 or
in the sequence shown in Table I. The task for the learning
algorithms is to find a policy (which might be such a cycle)
that maximizes the cumulative reward. For this, the reward
is the speed of the robot, i.e. the distance that the body of
the robot moves forward per time step. Consequently, a move
forward gives positive reward whereas any backward move
yields negative reward.

In the following we describe the robots architecture and
elaborate on simple experiments that students can conduct with
a software called the “Teachingbox“ [7], which is an open-
source framework written in Java. By using this software tool,
students are (1) able to send action commands to the robot
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Fig. 2. The 5×5 grid-world model (left) and a cyclic walking policy (right).
States within the cycle are labeled as

⊙
.

TABLE I
FOUR STEPS OF A SIMPLE CYCLIC FORWARD-WALKING POLICY.

robot time state reward action
t gy gx x at

0 up left 0 right

1 up right 0 down

2 down right 0 left

3 down left 1 up

in order to observe the robot’s behavior and (2) are also able
to learn policies on the basis of observed rewards from the
robot’s environment.

II. HARDWARE ROBOT

A prototype of the robot that we use in our “Laboratory on
Artificial Intelligence” is depicted in Figure 3. Basically, this
robot is controlled by an ATmega32 microcontroller board that
is mounted on top of the robot. This board controls the joints
of the robot which are driven by Dynamixel AX-12 actuators.
These servos communicate with a half-duplex asynchronous
packet-protocol on TTL-level with up to 1,000,000 bps. The
maximum holding torque is about 1.17 Nm.

The speed of the robot is measured by an optical incremental
encoder that is connected via a non-slip belt transmission to
a (rigid) wheel axle. The controller board also comes up with
outlets for the servos, an outlet for the encoder and a DIP
switch for setting up several parameters. For instance, one
of these parameters inverts the encoder signal and results the
robot to learn a backward-moving strategy instead of moving
forward.

On top of the controller board, there also exists a RF04

Fig. 3. The crawling robot we use in our laboratory tutorials.

ER400TRS serial transceiver module, which is used for com-
munication with the Teachingbox software on the PC side.
This module is directly attached to the ATMega’s serial port
and operates by a speed of 19,200 baud. On the PC side we
use a RF04 USB telemetry module for communicating with
the controller board over a standard RS232 COM port.

III. REINFORCEMENT LEARNING

We consider the reinforcement learning framework [2]
where an agent interacts with a Markovian decision process
(MDP). At each discrete time step, t ∈ {0, 1, 2, ...}, the
agent is in a certain state, st ∈ S—for example, the angular
position of the robot’s joints. After the selection of an action,
at ∈ A(st), the agent receives a reward signal, rt+1 ∈ R,
from the environment and passes into the successor state
st+1. The decision which action is selected in a certain state
is characterized by a policy, π(s) = a, that could also be
stochastic: π(a|s) = Pr{at = a|st = s}. A policy that
maximizes the cumulative reward over time is denoted as π∗.

In practice, there exist several approaches by which a policy
for the robot can be learned. For this, we recently proposed
using the value-iteration algorithm [8] with an online model-
learning of the environment in parallel which was derived from
the Dynamic Programming approach. In order to save addi-
tional memory required by the model-learning task, we now
propose using a different learning algorithm within this paper
that belongs to the family of Temporal-Difference Learning
methods.

In order to learn an optimal policy π∗ for the robot, we use
Watkins’s Q-learning algorithm [9] as depicted in Algorithm 1.
This algorithm basically works by assigning a numerical value
to each state-action pair (s, a), where each state-action value,
Q(s, a) ∈ Q, is an estimate of the expected cumulative reward,
Rt, for following the current policy by starting in state s and
taking action a:

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
,

where 0 < γ < 1 denotes a discounting factor that specifies
the influence of rewards received more far in the future.



Furthermore, the parameter 0 < α < 1 specifies a learning
rate that determines how much the value-function estimate is
being adapted w.r.t. to the current temporal-difference error:

δ = r + γmaxb∈A(s′)Q(s′, b)−Q(s, a) . (1)

The affect of both algorithm parameters on the learning
process is explored by the students during the conduction of
experiments as described in Section V.

Algorithm 1 Q-LEARNING ON ROBOT WITH ε-GREEDY

1: Initialize Q arbitrarily, e.g. Q(s, a) = 0 for all s, a

2: Initialize start state arbitrarily, e.g. s← (gx = 1, gy = 1)

3: loop
4: ξ ← rand(0..1)

5: if ξ < ε then
6: a← random action from A(s)
7: else
8: a← argmaxb∈A(s)Q(s, b)
9: end if

10: select action a
11: observe reward r and successor state s′

12: a∗ ← argmaxb∈A(s′)Q(s′, b)
13: δ ← r + γQ(s′, a∗)−Q(s, a)
14: Q(s, a)← Q(s, a) + αδ

15: s← s′

16: end loop

The robot’s action selection policy, which is based on
the Q-function learned throughout the interaction with the
environment, works as follows. Since the robot is faced with an
unknown environment after switching it on, a tradeoff between
exploration (long-term optimization) and exploitation (short-
term optimization) has to be done [2], [10]. A very simple and
commonly used technique for this is ε-Greedy exploration [9],
where at each time step the agent selects an action at random
with probability 0 ≤ ε ≤ 1 (exploration). With probability
1− ε (exploitation) the agent selects an action that is greedy
with respect to the current value-function estimates:

π(s) =

{
random action from A(s) if ξ < ε

argmaxa∈A(s)Q(s, a) otherwise,
(2)

where 0 ≤ ξ ≤ 1 is a uniform random number drawn at each
time step. If there is more than one action having the highest
estimated value in state s, a random action of this set of best
actions is chosen.

In order to speed-up learning, a commonly used approach
is to reduce the exploration rate ε over time. In this case ε
is set to a high value at the beginning of the learning process
which is decreased by a constant fraction at each time step.
This results that the agent is more explorative at the beginning
of the learning process, when the environment knowledge

is unknown, as later the agent becomes pure exploitative.
The final outcome of the learning algorithm where the robot
interacted some time with the real world is shown in Figure 4.

Fig. 4. The Q-values and (greedy) policy learned by Q-learning from a
real-world interaction of the walking robot (learned with γ = 0.99). The
corresponding rewards are shown in Figure 5.

IV. THE TEACHINGBOX

When students should learn to understand the behavior of an
algorithm, it is didactic supportive to perform experiments with
a simple demonstrator. With such it should be possible to eas-
ily play with, e.g. in terms of algorithms parameter variations
which enable to observe the affect of such parameters on the
learning progress. Furthermore, such a demonstrator should
also be usable without much effort in order that students focus
only on relevant things.

Our recently presented software framework, the Teaching-
box (TB) [7], aims at providing a rich library of implemented
algorithms for robot learning in a universal robot learning
framework. Hereby, the main purpose of this open-source
Java framework is to support the development of autonomous
agents with learning capabilities. The TB comes up with
algorithms for RL, Learning-by-Demonstration, the possibility
of manually programming policies and a build-in grid-world
editor for modeling simple two-dimensional grid worlds. In
particular, the RL-part of the TB currently consists of im-
plementations of the most popular learning algorithms such
as value-iteration, Q-learning and SARSA-learning with the
support for Softmax action selection and ε-greedy policies [2].
Furthermore, the TB also supports eligibility traces as well as
gradient-descent learning of value functions, e.g. by CMACs
or radial basis function networks. In order to visualize the
learned behavior of an agent, the TB also provides a plotting
library for value functions and learned policies.

In our “Laboratory on Artificial Intelligence“ students con-
duct experiments with the TB and the crawling robot by
writing simple Java programs. A typical program code that
demonstrates the usage of the TB with learning on the
hardware robot is depicted in Algorithm 2. At first, a Q-
function with tabular approximation is instantiated. Then, the
environment (the hardware robot) and the policy to be used
are specified. Finally, the Q-learning algorithm (learner) is
configured, attached to the agent and a new experiment is
started for 1 episode with 300 time steps.

Immediately after the experiment is started, the TB’s grid-
world editor appears to the user that visualizes the current state
of the robot and the rewards observed from the environment
in real time, (Figure 5). Furthermore, also a policy window



Fig. 5. This figure shows the grid-world editor of the Teachingbox where on top of the window the user is able to configure the policy. Numbers in
cells indicate the reward r(s, a) observed from the environment. The cycle A3→B3→B4→A4 indicates the optimal cycle having an average reward of
r̄ = 17+20−6−8

4
= 5.75 per action. All other marked cycles indicate examples of sub-optimal cycles that have a lower average reward/action compared to

the optimal cycle. The cell having the surrounded border (A3) indicates the current state of the robot.

appears (the upper window of Figure 5) in which the user
is able to configure the exploration/exploitation policy to be
used by the agent. Additionally to the standard policies such as
ε-greedy and Softmax, the user can also control the robot ”by-
hand“ when selecting the ”Human-Trainer“ policy. With this,
the robot’s actions are controlled by the cursor keys (up, down,
left, right) whereby it’s also possible to select the ”Greedy“
action with respect to the currently learned Q-function.

It is easy to adapt the Java code for the use with other
environments. For example, if learning should be based in an
arbitrary m ∗ n grid-world environment modeled by the user,
then only line 2 of Algorithm 2 needs to be adapted to:

GridworldEnvironment env =
new GridworldEnvironment(m,n);

which simply replaces the agent’s environment and also
demonstrates the flexibility of the Teachingbox which is based
on the use of Java Interfaces. This approach standardizes
methods of policies, environments and learners with the goal
of being interoperable with each other. For example, each en-

vironment in the TB implements an Environment interface
that standardizes important methods such as:
• double doAction(Action)
• State getState()
• boolean isTerminalState().

where State and Action are double vectors in order to be
compatible with each component of the Teachingbox. Another
example for the use of interfaces are policies that have to
implement a Policy interface in order to standardize the
methods:
• Action getAction(State)
• Action getBestAction(State) .

V. EXPERIMENTS WITH THE ROBOT AND THE
TEACHINGBOX

In the laboratory tutorial on RL, the first task for the students
is to model the rewards of a simulation of the crawling robot
by using the TB’s grid-world editor. After the modeling of
an environment, the policy must be learned by a learning
algorithm such as Q-learning, Sarsa or value iteration. During



Algorithm 2 SIMPLE Q-LEARNING JAVA EXPERIMENT

1: // initialize new Q-Function with Q(s,a)=0 by default
TabularQFunction Q = new HashQFunction(0);

2: // establish serial robot link (baudrate, port)
CrawlerEnvironment env =

new CrawlerEnvironment(19200, ”/dev/ttyUSB0”);

3: // setup policy configurator
PolicyConfigurator pi =

new PolicyConfigurator ( Q,
CrawlerEnvironment.ACTION SET);

4: // create agent
Agent agent = new Agent(pi);

5: // setup experiment with 300 time steps
Experiment experiment =

new Experiment(agent, env, 1, 300);

6: // setup Q-function learner
TabularQLearner learner = new TabularQLearner(Q);
learner.setAlpha(0.3);
learner.setGamma(0.9);

7: // attach learner to agent
agent.addObserver(learner);

8: // start experiment
experiment.run();

this process, students have to conduct several experiments with
variations of the learning algorithm parameters α and γ as
well as with the policy parameter ε. These experiments lead
to the observation that, for example, the discounting-factor
γ ∈ [0, 1) has an important influence on the quality of learned
policies. For example, if γ is chosen very small, then the
agent is more near-sighted and takes not rewards into account
received from actions more far in the future, and which often
results in learning sub-optimal policies. In comparison, large
settings of γ make the agent more far-sighted, but in turn to
this, the speed of learning can also be slowly at the beginning
of learning since the convergence of the Q-function requires
more transition experiences.

While learning the Q-function, the TB can memorize the
function on the computer hard-disk, which enables reusing it
in other experiments. After the successful learning of the Q-
function, students have to evaluate the learned policy from the
simulated environment on the real hardware robot. For this,
the GridWorldEnvironment in the Java code has to be
replaced by the CrawlerEnvironment. Furthermore, the
exploration/exploitation policy for the robot has to be a pure
greedy policy (ε = 0), which results that in a given state the
action with the highest Q-value is selected. It is important that
throughout this experiment learning is disabled in the Java-
code, i.e. no Learner is attached to the Experiment. This
results that only the policy of the simulated environment runs
on the hardware robot. The idea behind this approach is to

enable observing how well the environment has been modeled
by the students and how the resulting policy looks like by
observing the robots behavior. Therefore, after the selection
of an action, the robot transmits the actual state as well as the
reward for the most recent selected action to the Teachingbox
that visualizes these values in the grid-world editor.

Next, students conduct experiments with the environment
of the real hardware robot. In this experiment the Learner
has to be attached to the Experiment again, which enables
learning from the robot’s environment instead of learning
from the simulated environment. Again, each state and reward
received from the robot is visualized in the grid-world editor.

Throughout the experiment with the hardware robot, the
students task is to vary the learning rate α ∈ [0, 1) of the
Q-learning algorithm that determines how fast the learner
adapts the Q-function with respect to the current TD-error δ.
The understanding of this parameter is especially important,
because the robot interacts in a non-deterministic environment
with a noisy reinforcement signal due to the sensor and which
also varies due to irregularities of the robot’s surface. On the
one hand, a large setting of the learning rate causes a fast
adaption to environmental changes, for example, when the
hardware robot walks from tar to grass. But on the other hand,
large settings of α can also be problematic because sensor
noise as part of the reinforcement signal may cause the robot to
leave a learned ”optimal” cycle. In contrast, when the learning
rate is relative small, learning of policies takes more time due
to the slow adaption of the (more accurate) Q-function.

The last experiment evolves the understanding for the need
of balancing exploration and exploitation, which is also con-
ducted on the real hardware robot and where students vary the
policy parameter ε ∈ (0, 1) of the ε-greedy method (policy
configurator on top of Figure 5). As a result, students will
find out that without any exploration, i.e. ε = 0, the agent is
very likely to stick in sub-optimal cycles of the state space
(due to local minima of the Q-function) that in sum yield
to a relative small cumulative reward than compared with
the optimal cycle. Such a sub-optimal behavior is observable
as the forward walking velocity of the robot that might be
significantly slower as in comparison to the optimal cycle.
The reason for this behavior on the hardware robot is often
due to the fact that the robot hasn’t walked through every state
transition of the state space and thus actually doesn’t know
about other (better) cycles. If such behavior occurs throughout
the learning process, one can simply solve this misbehavior in
the TB by increasing the exploration parameter ε in order that
the robot also tries other actions which are not greedy with
respect to the Q-function. Furthermore, one may also use the
“Human-Trainer” policy and guide the robot into parts of the
state space which haven’t been explored yet.

Finally, after the experiments with Q-learning, students can
perform the same kind of experiment with other learning
algorithms, for example, with value iteration or Sarsa and then
compare the speed of learning.



VI. EDUCATIONAL EXPERIENCES & CONCLUSIONS

In order to get an overview whether or not the robot is a
good demonstrator for reinforcement learning, we asked our
students to participate in a pilot survey. Until the deadline
of this paper, the online questionnaire was filled out by 5 of
10 students which represent 50% of the participants of our
latest AI course. Because of this low return of responses, the
quality of the following results indicates just a rough direction
and must be seen as preliminary.

The results of our questions reveal that the students are of
the opinion that the robot is a good object of study in general
and it seems that the understanding of how reinforcement
learning works and how learning method parameters affect
the robot’s speed (policy quality) got conveyed. Despite of
being a good demonstrator, the students also remarked that
the robot’s hardware is still not comprehensive enough. From
our point of view, this answer is not surprising since we
cover reinforcement learning in about four lessons (each 1.5
hours), where we’re limited in teaching just a small scope
of the overall research field, i.e. we just explain discrete
state and action spaces and do not consider the continuum.
Furthermore, the problem of delayed rewards that exists in
real world applications (e.g. the outcome of board games) is
not given by the robot example. Anyway, interested students
may write their own environments within the Teachingbox,
which is possible due to the public availability of the source
code on SourceForge. Alternatively, students may also play
with standard use-cases such as the mountain-car or inverse-
pendulum problem, which are already implemented in the
Teachingbox.

The results also indicate that the students sustainably en-
hanced their skills on differentiating between the two main
algorithms we convey: value-iteration and Q-learning. In turn,
we couldn’t obtain the same good result on the impor-
tance of the exploration/exploitation problem. Nevertheless,
the students’ feedback on both the algorithms and the ex-
ploration/exploitation problem was still positive and so we
achieved our main goal: To present reinforcement learning
in a lively, interesting manner and to support the students
learning success. Finally, the students were enthusiastic to see
that a behavior which has been learned in a simulation could
be transferred to a real robot.

From our teachers’ point of view, the robot demonstrator
is a versatile instrument which greatly enhanced our lessons
on reinforcement learning in order to present behavior learning
for robots to the students. With the Teachingbox, we have a re-
liable software tool that also supports more complex hardware
demonstrators that eventually will be constructed in the future.
Furthermore, we also provide the robot’s construction plans,
printed circuit board diagrams and videos on our website1 and
thus enable other interested institutions to rebuild the robot by
themselves.

1http://ailab.hs-weingarten.de/
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